dot product - angle formula:
if angle between $\vec{u} \& \vec{v}$ is $\boldsymbol{\theta}$, then ...

$$
\begin{aligned}
& \vec{u} \cdot \vec{v}=|\vec{u}| \cdot|\vec{v}| \cdot \cos \theta \leftarrow \text { all \#'s } \\
& \left(\text { or } \frac{\vec{u}}{|\vec{u}|} \cdot \frac{\vec{v}}{|\vec{v}|}=\cos \theta\right)
\end{aligned}
$$

ex 3) find angle θ between $\vec{u}=\langle 2,1,4\rangle \& \vec{v}=\langle-1,3,2\rangle$
solution: use dot-angle formula:

$$
\begin{aligned}
\cos \theta=\frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot|\vec{u}|} & =\frac{9}{|\vec{u}| \cdot \sqrt{14}} & |\vec{u}| & =\sqrt{\left(a^{2}\right)+\left(1^{2}\right)+\left(4^{2}\right)} \\
& =\frac{9}{\sqrt{21} \cdot \sqrt{14}} & |\vec{u}| & =\sqrt{2 \mid}
\end{aligned}
$$

then $\quad \theta=\arccos \left(\frac{9}{\sqrt{21} \cdot \sqrt{14}}\right)$
sign of $\vec{u} \cdot \vec{v}$:

$$
\hat{u}^{\vec{u}} \theta=\pi / 2=90^{\circ}, \vec{v}
$$

$$
\left(\vec{u} \cdot \vec{u}=|u|^{2}\right)
$$

- if $\vec{u} \cdot \vec{v}=0$ then

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =|\vec{u}| \cdot|\vec{v}| \cos \left(\frac{x}{2}\right) \\
& =|\vec{u}| \cdot|\vec{v}| \cdot 0=0
\end{aligned}
$$

$$
\vec{u} \& \vec{v} \text { orthogonal (perpendicular) }
$$

